:::
  • ENGLISH
  • 網站導覽
:::

化學系林彥多專案助理教授發表最新期刊論文

  • 07/12/2021
  • |
  • 校園頭條
  • |
  • 資料提供:研究發展處

【研究發展處訊】

化學系林彥多專案助理教授發表最新期刊論文

Thiophene-Fused Butterfly-Shaped Polycyclic Arenes with a Diphenanthro[9,10-b:9 ',10 '-d]thiophene Core for Highly Efficient and Stable Perovskite Solar Cells

作者:Samala Venkateswarlu, Yan-Duo Lin,* Kun-Mu Lee,* Kang-Ling Liau, and Yu-Tai Tao*

ACS Applied Materials & Interfaces (SCI)

卷數:12 期數:45

頁碼:50495-50504

出版日期:Oct. 2020

摘要:

Two polycyclic heteroarene derivatives, namely, V-1 and V-2, with a diphenanthro- [9,10-b:9′,10′-d]thiophene (DPT) core tethered with two diphenylaminophenyl or diphenylamino groups were first synthesized and used as hole-transporting materials (HTMs) in perovskite solar cell (PSC) fabrication. The novel HTMs exhibit appropriate energy-level alignment with the perovskite so as to ensure efficient hole transfer from the perovskite to HTMs. V-2 with the diphenylamino substituent on DPT exhibited impressive photovoltaic performance with a power conversion efficiency of 19.32%, which was higher than that of V-1 (18.60%) and the benchmark 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene(spiro-OMeTAD) (17.99%), presumably because of a better hole extraction, higher hole mobility, and excellent film-forming ability, which were supported by steady-state photoluminescence (PL), time-resolved PL, the hole mobility experiment, scanning electron microscopy, and atomic force microscopy measurements. Meanwhile, V-2-based PSCs exhibited better long-term durability than that with V-1 and the state-of-the-art spiro-OMeTAD, which is ascribable to the excellent surface morphology and hydrophobicity of the film. This systematic study suggests that DPT-based molecules are good potential candidates as HTMs for achieving high-performance PSCs.

研究事務組小提醒:教師如有最新發表於AHCI、SSCI、SCI、EI、TSSCI、THCI、「東吳大學外語學門獎勵名單」之期刊論文,歡迎將相關資訊e-mail至rad@scu.edu.tw,研究發展處將會公告於校園頭條,以廣交流。

【文圖/研究事務組游晴如組員】